![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfres2 | GIF version |
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
dfres2 | ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4639 | . 2 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | relopab 4464 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
3 | vex 2560 | . . . . 5 ⊢ 𝑤 ∈ V | |
4 | 3 | brres 4618 | . . . 4 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ (𝑧𝑅𝑤 ∧ 𝑧 ∈ 𝐴)) |
5 | df-br 3765 | . . . 4 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴)) | |
6 | ancom 253 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) | |
7 | 4, 5, 6 | 3bitr3i 199 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
8 | vex 2560 | . . . 4 ⊢ 𝑧 ∈ V | |
9 | eleq1 2100 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
10 | breq1 3767 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
11 | 9, 10 | anbi12d 442 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
12 | breq2 3768 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
13 | 12 | anbi2d 437 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
14 | 8, 3, 11, 13 | opelopab 4008 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
15 | 7, 14 | bitr4i 176 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
16 | 1, 2, 15 | eqrelriiv 4434 | 1 ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 = wceq 1243 ∈ wcel 1393 〈cop 3378 class class class wbr 3764 {copab 3817 ↾ cres 4347 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-res 4357 |
This theorem is referenced by: shftidt2 9433 |
Copyright terms: Public domain | W3C validator |