ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel4v Structured version   GIF version

Theorem dfrel4v 4715
Description: A relation can be expressed as the set of ordered pairs in it. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
dfrel4v (Rel 𝑅𝑅 = {⟨x, y⟩ ∣ x𝑅y})
Distinct variable group:   x,y,𝑅

Proof of Theorem dfrel4v
StepHypRef Expression
1 dfrel2 4714 . 2 (Rel 𝑅𝑅 = 𝑅)
2 eqcom 2039 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
3 cnvcnv3 4713 . . 3 𝑅 = {⟨x, y⟩ ∣ x𝑅y}
43eqeq2i 2047 . 2 (𝑅 = 𝑅𝑅 = {⟨x, y⟩ ∣ x𝑅y})
51, 2, 43bitri 195 1 (Rel 𝑅𝑅 = {⟨x, y⟩ ∣ x𝑅y})
Colors of variables: wff set class
Syntax hints:  wb 98   = wceq 1242   class class class wbr 3755  {copab 3808  ccnv 4287  Rel wrel 4293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-rel 4295  df-cnv 4296
This theorem is referenced by:  dffn5im  5162
  Copyright terms: Public domain W3C validator