ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab2 Structured version   GIF version

Theorem dfrab2 3206
Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
dfrab2 {x Aφ} = ({xφ} ∩ A)
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem dfrab2
StepHypRef Expression
1 df-rab 2309 . 2 {x Aφ} = {x ∣ (x A φ)}
2 inab 3199 . . 3 ({xx A} ∩ {xφ}) = {x ∣ (x A φ)}
3 abid2 2155 . . . 4 {xx A} = A
43ineq1i 3128 . . 3 ({xx A} ∩ {xφ}) = (A ∩ {xφ})
52, 4eqtr3i 2059 . 2 {x ∣ (x A φ)} = (A ∩ {xφ})
6 incom 3123 . 2 (A ∩ {xφ}) = ({xφ} ∩ A)
71, 5, 63eqtri 2061 1 {x Aφ} = ({xφ} ∩ A)
Colors of variables: wff set class
Syntax hints:   wa 97   = wceq 1242   wcel 1390  {cab 2023  {crab 2304  cin 2910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rab 2309  df-v 2553  df-in 2918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator