Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dff4im | GIF version |
Description: Property of a mapping. (Contributed by Jim Kingdon, 4-Jan-2019.) |
Ref | Expression |
---|---|
dff4im | ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff3im 5312 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦)) | |
2 | df-br 3765 | . . . . . . . 8 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
3 | ssel 2939 | . . . . . . . . 9 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | |
4 | opelxp2 4378 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) → 𝑦 ∈ 𝐵) | |
5 | 3, 4 | syl6 29 | . . . . . . . 8 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑦 ∈ 𝐵)) |
6 | 2, 5 | syl5bi 141 | . . . . . . 7 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → 𝑦 ∈ 𝐵)) |
7 | 6 | pm4.71rd 374 | . . . . . 6 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
8 | 7 | eubidv 1908 | . . . . 5 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦))) |
9 | df-reu 2313 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ 𝑥𝐹𝑦)) | |
10 | 8, 9 | syl6bbr 187 | . . . 4 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
11 | 10 | ralbidv 2326 | . . 3 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
12 | 11 | pm5.32i 427 | . 2 ⊢ ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑥𝐹𝑦) ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
13 | 1, 12 | sylib 127 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∈ wcel 1393 ∃!weu 1900 ∀wral 2306 ∃!wreu 2308 ⊆ wss 2917 〈cop 3378 class class class wbr 3764 × cxp 4343 ⟶wf 4898 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |