Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfandc | GIF version |
Description: Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 566. (Contributed by Jim Kingdon, 30-Apr-2018.) |
Ref | Expression |
---|---|
dfandc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2im 566 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
2 | 1 | imp 115 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
3 | simplimdc 757 | . . . . . . 7 ⊢ (DECID 𝜑 → (¬ (𝜑 → ¬ 𝜓) → 𝜑)) | |
4 | 3 | adantr 261 | . . . . . 6 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → 𝜑)) |
5 | 4 | imp 115 | . . . . 5 ⊢ (((DECID 𝜑 ∧ DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → 𝜑) |
6 | simprimdc 756 | . . . . . . 7 ⊢ (DECID 𝜓 → (¬ (𝜑 → ¬ 𝜓) → 𝜓)) | |
7 | 6 | adantl 262 | . . . . . 6 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → 𝜓)) |
8 | 7 | imp 115 | . . . . 5 ⊢ (((DECID 𝜑 ∧ DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → 𝜓) |
9 | 5, 8 | jca 290 | . . . 4 ⊢ (((DECID 𝜑 ∧ DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → (𝜑 ∧ 𝜓)) |
10 | 9 | ex 108 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → (𝜑 ∧ 𝜓))) |
11 | 2, 10 | impbid2 131 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))) |
12 | 11 | ex 108 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 DECID wdc 742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 |
This theorem is referenced by: pm4.63dc 780 pm4.54dc 805 |
Copyright terms: Public domain | W3C validator |