ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfandc GIF version

Theorem dfandc 778
Description: Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 566. (Contributed by Jim Kingdon, 30-Apr-2018.)
Assertion
Ref Expression
dfandc (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))))

Proof of Theorem dfandc
StepHypRef Expression
1 pm3.2im 566 . . . 4 (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
21imp 115 . . 3 ((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))
3 simplimdc 757 . . . . . . 7 (DECID 𝜑 → (¬ (𝜑 → ¬ 𝜓) → 𝜑))
43adantr 261 . . . . . 6 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → 𝜑))
54imp 115 . . . . 5 (((DECID 𝜑DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → 𝜑)
6 simprimdc 756 . . . . . . 7 (DECID 𝜓 → (¬ (𝜑 → ¬ 𝜓) → 𝜓))
76adantl 262 . . . . . 6 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → 𝜓))
87imp 115 . . . . 5 (((DECID 𝜑DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → 𝜓)
95, 8jca 290 . . . 4 (((DECID 𝜑DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → (𝜑𝜓))
109ex 108 . . 3 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → (𝜑𝜓)))
112, 10impbid2 131 . 2 ((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)))
1211ex 108 1 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  pm4.63dc  780  pm4.54dc  805
  Copyright terms: Public domain W3C validator