Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > deceq2 | GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
deceq2 | ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5520 | . 2 ⊢ (𝐴 = 𝐵 → ((10 · 𝐶) + 𝐴) = ((10 · 𝐶) + 𝐵)) | |
2 | df-dec 8369 | . 2 ⊢ ;𝐶𝐴 = ((10 · 𝐶) + 𝐴) | |
3 | df-dec 8369 | . 2 ⊢ ;𝐶𝐵 = ((10 · 𝐶) + 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2097 | 1 ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 (class class class)co 5512 + caddc 6892 · cmul 6894 10c10 7972 ;cdc 8368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-dec 8369 |
This theorem is referenced by: deceq2i 8373 |
Copyright terms: Public domain | W3C validator |