ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 GIF version

Theorem decbin2 8471
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
decbin2 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 8068 . . 3 (2 · 1) = 2
21oveq2i 5523 . 2 ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2)
3 2cn 7986 . . 3 2 ∈ ℂ
4 decbin.1 . . . . 5 𝐴 ∈ ℕ0
54nn0cni 8193 . . . 4 𝐴 ∈ ℂ
63, 5mulcli 7032 . . 3 (2 · 𝐴) ∈ ℂ
7 ax-1cn 6977 . . 3 1 ∈ ℂ
83, 6, 7adddii 7037 . 2 (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1))
94decbin0 8470 . . 3 (4 · 𝐴) = (2 · (2 · 𝐴))
109oveq1i 5522 . 2 ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2)
112, 8, 103eqtr4ri 2071 1 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))
Colors of variables: wff set class
Syntax hints:   = wceq 1243  wcel 1393  (class class class)co 5512  1c1 6890   + caddc 6892   · cmul 6894  2c2 7964  4c4 7966  0cn0 8181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-1rid 6991  ax-rnegex 6993  ax-cnre 6995
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182
This theorem is referenced by:  decbin3  8472
  Copyright terms: Public domain W3C validator