Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decbin0 | GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin0 | ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t2e4 8069 | . . 3 ⊢ (2 · 2) = 4 | |
2 | 1 | oveq1i 5522 | . 2 ⊢ ((2 · 2) · 𝐴) = (4 · 𝐴) |
3 | 2cn 7986 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 8193 | . . 3 ⊢ 𝐴 ∈ ℂ |
6 | 3, 3, 5 | mulassi 7036 | . 2 ⊢ ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)) |
7 | 2, 6 | eqtr3i 2062 | 1 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 (class class class)co 5512 · cmul 6894 2c2 7964 4c4 7966 ℕ0cn0 8181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-cnex 6975 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-mulcom 6985 ax-addass 6986 ax-mulass 6987 ax-distr 6988 ax-1rid 6991 ax-rnegex 6993 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-inn 7915 df-2 7973 df-3 7974 df-4 7975 df-n0 8182 |
This theorem is referenced by: decbin2 8471 |
Copyright terms: Public domain | W3C validator |