![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcned | GIF version |
Description: Decidable equality implies decidable negated equality. (Contributed by Jim Kingdon, 3-May-2020.) |
Ref | Expression |
---|---|
dcned.eq | ⊢ (φ → DECID A = B) |
Ref | Expression |
---|---|
dcned | ⊢ (φ → DECID A ≠ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcned.eq | . . 3 ⊢ (φ → DECID A = B) | |
2 | dcn 745 | . . 3 ⊢ (DECID A = B → DECID ¬ A = B) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (φ → DECID ¬ A = B) |
4 | df-ne 2203 | . . 3 ⊢ (A ≠ B ↔ ¬ A = B) | |
5 | 4 | dcbii 746 | . 2 ⊢ (DECID A ≠ B ↔ DECID ¬ A = B) |
6 | 3, 5 | sylibr 137 | 1 ⊢ (φ → DECID A ≠ B) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 741 = wceq 1242 ≠ wne 2201 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 |
This theorem depends on definitions: df-bi 110 df-dc 742 df-ne 2203 |
This theorem is referenced by: nn0n0n1ge2b 8096 |
Copyright terms: Public domain | W3C validator |