Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcimpstab | GIF version |
Description: Decidability implies stability. The converse is not necessarily true. (Contributed by David A. Wheeler, 13-Aug-2018.) |
Ref | Expression |
---|---|
dcimpstab | ⊢ (DECID 𝜑 → STAB 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotrdc 751 | . 2 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) | |
2 | df-stab 740 | . 2 ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) | |
3 | 1, 2 | sylibr 137 | 1 ⊢ (DECID 𝜑 → STAB 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 STAB wstab 739 DECID wdc 742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-stab 740 df-dc 743 |
This theorem is referenced by: stabtestimpdc 824 |
Copyright terms: Public domain | W3C validator |