ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbunig Structured version   GIF version

Theorem csbunig 3579
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbunig (A 𝑉A / x B = A / xB)

Proof of Theorem csbunig
Dummy variables y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 2901 . . 3 (A 𝑉A / x{zy(z y y B)} = {z[A / x]y(z y y B)})
2 sbcexg 2807 . . . . 5 (A 𝑉 → ([A / x]y(z y y B) ↔ y[A / x](z y y B)))
3 sbcang 2800 . . . . . . 7 (A 𝑉 → ([A / x](z y y B) ↔ ([A / x]z y [A / x]y B)))
4 sbcg 2821 . . . . . . . 8 (A 𝑉 → ([A / x]z yz y))
5 sbcel2g 2865 . . . . . . . 8 (A 𝑉 → ([A / x]y By A / xB))
64, 5anbi12d 442 . . . . . . 7 (A 𝑉 → (([A / x]z y [A / x]y B) ↔ (z y y A / xB)))
73, 6bitrd 177 . . . . . 6 (A 𝑉 → ([A / x](z y y B) ↔ (z y y A / xB)))
87exbidv 1703 . . . . 5 (A 𝑉 → (y[A / x](z y y B) ↔ y(z y y A / xB)))
92, 8bitrd 177 . . . 4 (A 𝑉 → ([A / x]y(z y y B) ↔ y(z y y A / xB)))
109abbidv 2152 . . 3 (A 𝑉 → {z[A / x]y(z y y B)} = {zy(z y y A / xB)})
111, 10eqtrd 2069 . 2 (A 𝑉A / x{zy(z y y B)} = {zy(z y y A / xB)})
12 df-uni 3572 . . 3 B = {zy(z y y B)}
1312csbeq2i 2870 . 2 A / x B = A / x{zy(z y y B)}
14 df-uni 3572 . 2 A / xB = {zy(z y y A / xB)}
1511, 13, 143eqtr4g 2094 1 (A 𝑉A / x B = A / xB)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242  wex 1378   wcel 1390  {cab 2023  [wsbc 2758  csb 2846   cuni 3571
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-sbc 2759  df-csb 2847  df-uni 3572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator