Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbnest1g GIF version

Theorem csbnest1g 2901
 Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
Assertion
Ref Expression
csbnest1g (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)

Proof of Theorem csbnest1g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcsb1v 2882 . . . 4 𝑥𝑦 / 𝑥𝐶
21ax-gen 1338 . . 3 𝑦𝑥𝑦 / 𝑥𝐶
3 csbnestgf 2898 . . 3 ((𝐴𝑉 ∧ ∀𝑦𝑥𝑦 / 𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶)
42, 3mpan2 401 . 2 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶)
5 csbco 2861 . . 3 𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐵 / 𝑥𝐶
65csbeq2i 2876 . 2 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶
7 csbco 2861 . 2 𝐴 / 𝑥𝐵 / 𝑦𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶
84, 6, 73eqtr3g 2095 1 (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1241   = wceq 1243   ∈ wcel 1393  Ⅎwnfc 2165  ⦋csb 2852 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765  df-csb 2853 This theorem is referenced by:  csbidmg  2902
 Copyright terms: Public domain W3C validator