Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbfv12g | GIF version |
Description: Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) |
Ref | Expression |
---|---|
csbfv12g | ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiotag 4895 | . . 3 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦)) | |
2 | sbcbrg 3813 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦)) | |
3 | csbconstg 2864 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
4 | 3 | breq2d 3776 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → (⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
5 | 2, 4 | bitrd 177 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ([𝐴 / 𝑥]𝐵𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
6 | 5 | iotabidv 4888 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (℩𝑦[𝐴 / 𝑥]𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
7 | 1, 6 | eqtrd 2072 | . 2 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦)) |
8 | df-fv 4910 | . . 3 ⊢ (𝐹‘𝐵) = (℩𝑦𝐵𝐹𝑦) | |
9 | 8 | csbeq2i 2876 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ⦋𝐴 / 𝑥⦌(℩𝑦𝐵𝐹𝑦) |
10 | df-fv 4910 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = (℩𝑦⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝐹𝑦) | |
11 | 7, 9, 10 | 3eqtr4g 2097 | 1 ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 [wsbc 2764 ⦋csb 2852 class class class wbr 3764 ℩cio 4865 ‘cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 |
This theorem is referenced by: csbfv2g 5210 |
Copyright terms: Public domain | W3C validator |