Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cossxp | GIF version |
Description: Composition as a subset of the cross product of factors. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
cossxp | ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 4819 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | relssdmrn 4841 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵))) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) |
4 | dmcoss 4601 | . . 3 ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 | |
5 | rncoss 4602 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 | |
6 | xpss12 4445 | . . 3 ⊢ ((dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 ∧ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴) → (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ⊆ (dom 𝐵 × ran 𝐴)) | |
7 | 4, 5, 6 | mp2an 402 | . 2 ⊢ (dom (𝐴 ∘ 𝐵) × ran (𝐴 ∘ 𝐵)) ⊆ (dom 𝐵 × ran 𝐴) |
8 | 3, 7 | sstri 2954 | 1 ⊢ (𝐴 ∘ 𝐵) ⊆ (dom 𝐵 × ran 𝐴) |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 2917 × cxp 4343 dom cdm 4345 ran crn 4346 ∘ ccom 4349 Rel wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 |
This theorem is referenced by: coexg 4862 tposssxp 5864 |
Copyright terms: Public domain | W3C validator |