![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cofunex2g | GIF version |
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 4855 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
2 | cofunexg 5738 | . . . 4 ⊢ ((Fun ◡𝐵 ∧ ◡𝐴 ∈ V) → (◡𝐵 ∘ ◡𝐴) ∈ V) | |
3 | 1, 2 | sylan2 270 | . . 3 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (◡𝐵 ∘ ◡𝐴) ∈ V) |
4 | cnvco 4520 | . . . . 5 ⊢ ◡(◡𝐵 ∘ ◡𝐴) = (◡◡𝐴 ∘ ◡◡𝐵) | |
5 | cocnvcnv2 4832 | . . . . 5 ⊢ (◡◡𝐴 ∘ ◡◡𝐵) = (◡◡𝐴 ∘ 𝐵) | |
6 | cocnvcnv1 4831 | . . . . 5 ⊢ (◡◡𝐴 ∘ 𝐵) = (𝐴 ∘ 𝐵) | |
7 | 4, 5, 6 | 3eqtrri 2065 | . . . 4 ⊢ (𝐴 ∘ 𝐵) = ◡(◡𝐵 ∘ ◡𝐴) |
8 | cnvexg 4855 | . . . 4 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → ◡(◡𝐵 ∘ ◡𝐴) ∈ V) | |
9 | 7, 8 | syl5eqel 2124 | . . 3 ⊢ ((◡𝐵 ∘ ◡𝐴) ∈ V → (𝐴 ∘ 𝐵) ∈ V) |
10 | 3, 9 | syl 14 | . 2 ⊢ ((Fun ◡𝐵 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∘ 𝐵) ∈ V) |
11 | 10 | ancoms 255 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Fun ◡𝐵) → (𝐴 ∘ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∈ wcel 1393 Vcvv 2557 ◡ccnv 4344 ∘ ccom 4349 Fun wfun 4896 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |