Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  coeq12d GIF version

Theorem coeq12d 4500
 Description: Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12d.1 (𝜑𝐴 = 𝐵)
coeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
coeq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem coeq12d
StepHypRef Expression
1 coeq12d.1 . . 3 (𝜑𝐴 = 𝐵)
21coeq1d 4497 . 2 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
3 coeq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43coeq2d 4498 . 2 (𝜑 → (𝐵𝐶) = (𝐵𝐷))
52, 4eqtrd 2072 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∘ ccom 4349 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-in 2924  df-ss 2931  df-br 3765  df-opab 3819  df-co 4354 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator