ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsng GIF version

Theorem cnvsng 4806
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015.)
Assertion
Ref Expression
cnvsng ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})

Proof of Theorem cnvsng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3549 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21sneqd 3388 . . . 4 (𝑥 = 𝐴 → {⟨𝑥, 𝑦⟩} = {⟨𝐴, 𝑦⟩})
32cnveqd 4511 . . 3 (𝑥 = 𝐴{⟨𝑥, 𝑦⟩} = {⟨𝐴, 𝑦⟩})
4 opeq2 3550 . . . 4 (𝑥 = 𝐴 → ⟨𝑦, 𝑥⟩ = ⟨𝑦, 𝐴⟩)
54sneqd 3388 . . 3 (𝑥 = 𝐴 → {⟨𝑦, 𝑥⟩} = {⟨𝑦, 𝐴⟩})
63, 5eqeq12d 2054 . 2 (𝑥 = 𝐴 → ({⟨𝑥, 𝑦⟩} = {⟨𝑦, 𝑥⟩} ↔ {⟨𝐴, 𝑦⟩} = {⟨𝑦, 𝐴⟩}))
7 opeq2 3550 . . . . 5 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
87sneqd 3388 . . . 4 (𝑦 = 𝐵 → {⟨𝐴, 𝑦⟩} = {⟨𝐴, 𝐵⟩})
98cnveqd 4511 . . 3 (𝑦 = 𝐵{⟨𝐴, 𝑦⟩} = {⟨𝐴, 𝐵⟩})
10 opeq1 3549 . . . 4 (𝑦 = 𝐵 → ⟨𝑦, 𝐴⟩ = ⟨𝐵, 𝐴⟩)
1110sneqd 3388 . . 3 (𝑦 = 𝐵 → {⟨𝑦, 𝐴⟩} = {⟨𝐵, 𝐴⟩})
129, 11eqeq12d 2054 . 2 (𝑦 = 𝐵 → ({⟨𝐴, 𝑦⟩} = {⟨𝑦, 𝐴⟩} ↔ {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}))
13 vex 2560 . . 3 𝑥 ∈ V
14 vex 2560 . . 3 𝑦 ∈ V
1513, 14cnvsn 4803 . 2 {⟨𝑥, 𝑦⟩} = {⟨𝑦, 𝑥⟩}
166, 12, 15vtocl2g 2617 1 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  {csn 3375  cop 3378  ccnv 4344
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353
This theorem is referenced by:  opswapg  4807  funsng  4946
  Copyright terms: Public domain W3C validator