Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvimarndm GIF version

Theorem cnvimarndm 4689
 Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 4678 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 4356 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 4666 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 4527 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2070 1 (𝐴 “ ran 𝐴) = dom 𝐴
 Colors of variables: wff set class Syntax hints:   = wceq 1243  ◡ccnv 4344  dom cdm 4345  ran crn 4346   “ cima 4348 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator