ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvexg GIF version

Theorem cnvexg 4855
Description: The converse of a set is a set. Corollary 6.8(1) of [TakeutiZaring] p. 26. (Contributed by NM, 17-Mar-1998.)
Assertion
Ref Expression
cnvexg (𝐴𝑉𝐴 ∈ V)

Proof of Theorem cnvexg
StepHypRef Expression
1 relcnv 4703 . . 3 Rel 𝐴
2 relssdmrn 4841 . . 3 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
31, 2ax-mp 7 . 2 𝐴 ⊆ (dom 𝐴 × ran 𝐴)
4 df-rn 4356 . . . 4 ran 𝐴 = dom 𝐴
5 rnexg 4597 . . . 4 (𝐴𝑉 → ran 𝐴 ∈ V)
64, 5syl5eqelr 2125 . . 3 (𝐴𝑉 → dom 𝐴 ∈ V)
7 dfdm4 4527 . . . 4 dom 𝐴 = ran 𝐴
8 dmexg 4596 . . . 4 (𝐴𝑉 → dom 𝐴 ∈ V)
97, 8syl5eqelr 2125 . . 3 (𝐴𝑉 → ran 𝐴 ∈ V)
10 xpexg 4452 . . 3 ((dom 𝐴 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐴 × ran 𝐴) ∈ V)
116, 9, 10syl2anc 391 . 2 (𝐴𝑉 → (dom 𝐴 × ran 𝐴) ∈ V)
12 ssexg 3896 . 2 ((𝐴 ⊆ (dom 𝐴 × ran 𝐴) ∧ (dom 𝐴 × ran 𝐴) ∈ V) → 𝐴 ∈ V)
133, 11, 12sylancr 393 1 (𝐴𝑉𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1393  Vcvv 2557  wss 2917   × cxp 4343  ccnv 4344  dom cdm 4345  ran crn 4346  Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by:  cnvex  4856  relcnvexb  4857  cofunex2g  5739  cnvf1o  5846  brtpos2  5866  tposexg  5873  cnven  6288  fopwdom  6310
  Copyright terms: Public domain W3C validator