Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnveq0 | GIF version |
Description: A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
cnveq0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnv0 4727 | . 2 ⊢ ◡∅ = ∅ | |
2 | rel0 4462 | . . . . 5 ⊢ Rel ∅ | |
3 | cnveqb 4776 | . . . . 5 ⊢ ((Rel 𝐴 ∧ Rel ∅) → (𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) | |
4 | 2, 3 | mpan2 401 | . . . 4 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) |
5 | eqeq2 2049 | . . . . 5 ⊢ (∅ = ◡∅ → (◡𝐴 = ∅ ↔ ◡𝐴 = ◡∅)) | |
6 | 5 | bibi2d 221 | . . . 4 ⊢ (∅ = ◡∅ → ((𝐴 = ∅ ↔ ◡𝐴 = ∅) ↔ (𝐴 = ∅ ↔ ◡𝐴 = ◡∅))) |
7 | 4, 6 | syl5ibr 145 | . . 3 ⊢ (∅ = ◡∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅))) |
8 | 7 | eqcoms 2043 | . 2 ⊢ (◡∅ = ∅ → (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅))) |
9 | 1, 8 | ax-mp 7 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ◡𝐴 = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1243 ∅c0 3224 ◡ccnv 4344 Rel wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |