ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 4773
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 4703 . . . . 5 Rel 𝐴
2 df-rel 4352 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 133 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4447 . . . . 5 Rel (V × V)
5 dfrel2 4771 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 133 . . . 4 (V × V) = (V × V)
73, 6sseqtr4i 2978 . . 3 𝐴(V × V)
8 dfss 2932 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 133 . 2 𝐴 = (𝐴(V × V))
10 cnvin 4731 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 4731 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4510 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3158 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4352 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 134 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 4771 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 133 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2062 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2066 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1243  Vcvv 2557  cin 2916  wss 2917   × cxp 4343  ccnv 4344  Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353
This theorem is referenced by:  cnvcnv2  4774  cnvcnvss  4775
  Copyright terms: Public domain W3C validator