 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleljust Structured version   GIF version

Theorem cleljust 1810
 Description: When the class variables of set theory are replaced with setvar variables, this theorem of predicate calculus is the result. This theorem provides part of the justification for the consistency of that definition, which "overloads" the setvar variables in wel 1391 with the class variables in wcel 1390. (Contributed by NM, 28-Jan-2004.)
Assertion
Ref Expression
cleljust (x yz(z = x z y))
Distinct variable groups:   x,z   y,z

Proof of Theorem cleljust
StepHypRef Expression
1 ax-17 1416 . . 3 (x yz x y)
2 elequ1 1597 . . 3 (z = x → (z yx y))
31, 2equsex 1613 . 2 (z(z = x z y) ↔ x y)
43bicomi 123 1 (x yz(z = x z y))
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   ↔ wb 98  ∃wex 1378 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-13 1401  ax-17 1416  ax-i9 1420  ax-ial 1424 This theorem depends on definitions:  df-bi 110 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator