Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  clel4 GIF version

Theorem clel4 2680
 Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel4.1 𝐵 ∈ V
Assertion
Ref Expression
clel4 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel4
StepHypRef Expression
1 clel4.1 . . 3 𝐵 ∈ V
2 eleq2 2101 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
31, 2ceqsalv 2584 . 2 (∀𝑥(𝑥 = 𝐵𝐴𝑥) ↔ 𝐴𝐵)
43bicomi 123 1 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  ∀wal 1241   = wceq 1243   ∈ wcel 1393  Vcvv 2557 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559 This theorem is referenced by:  intpr  3647
 Copyright terms: Public domain W3C validator