![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clel2 | GIF version |
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
clel2.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
clel2 | ⊢ (A ∈ B ↔ ∀x(x = A → x ∈ B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel2.1 | . . 3 ⊢ A ∈ V | |
2 | eleq1 2097 | . . 3 ⊢ (x = A → (x ∈ B ↔ A ∈ B)) | |
3 | 1, 2 | ceqsalv 2578 | . 2 ⊢ (∀x(x = A → x ∈ B) ↔ A ∈ B) |
4 | 3 | bicomi 123 | 1 ⊢ (A ∈ B ↔ ∀x(x = A → x ∈ B)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1240 = wceq 1242 ∈ wcel 1390 Vcvv 2551 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-v 2553 |
This theorem is referenced by: snss 3485 |
Copyright terms: Public domain | W3C validator |