ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chfnrn Structured version   GIF version

Theorem chfnrn 5221
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn ((𝐹 Fn A x A (𝐹x) x) → ran 𝐹 A)
Distinct variable groups:   x,A   x,𝐹

Proof of Theorem chfnrn
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5164 . . . . 5 (𝐹 Fn A → (y ran 𝐹x A (𝐹x) = y))
21biimpd 132 . . . 4 (𝐹 Fn A → (y ran 𝐹x A (𝐹x) = y))
3 eleq1 2097 . . . . . . 7 ((𝐹x) = y → ((𝐹x) xy x))
43biimpcd 148 . . . . . 6 ((𝐹x) x → ((𝐹x) = yy x))
54ralimi 2378 . . . . 5 (x A (𝐹x) xx A ((𝐹x) = yy x))
6 rexim 2407 . . . . 5 (x A ((𝐹x) = yy x) → (x A (𝐹x) = yx A y x))
75, 6syl 14 . . . 4 (x A (𝐹x) x → (x A (𝐹x) = yx A y x))
82, 7sylan9 389 . . 3 ((𝐹 Fn A x A (𝐹x) x) → (y ran 𝐹x A y x))
9 eluni2 3575 . . 3 (y Ax A y x)
108, 9syl6ibr 151 . 2 ((𝐹 Fn A x A (𝐹x) x) → (y ran 𝐹y A))
1110ssrdv 2945 1 ((𝐹 Fn A x A (𝐹x) x) → ran 𝐹 A)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242   wcel 1390  wral 2300  wrex 2301  wss 2911   cuni 3571  ran crn 4289   Fn wfn 4840  cfv 4845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator