ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqex GIF version

Theorem ceqex 2671
Description: Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.)
Assertion
Ref Expression
ceqex (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 19.8a 1482 . . 3 (𝑥 = 𝐴 → ∃𝑥 𝑥 = 𝐴)
2 isset 2561 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
31, 2sylibr 137 . 2 (𝑥 = 𝐴𝐴 ∈ V)
4 eqeq2 2049 . . . 4 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
54anbi1d 438 . . . . . 6 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
65exbidv 1706 . . . . 5 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
76bibi2d 221 . . . 4 (𝑦 = 𝐴 → ((𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)) ↔ (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))))
84, 7imbi12d 223 . . 3 (𝑦 = 𝐴 → ((𝑥 = 𝑦 → (𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))) ↔ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))))
9 19.8a 1482 . . . . 5 ((𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
109ex 108 . . . 4 (𝑥 = 𝑦 → (𝜑 → ∃𝑥(𝑥 = 𝑦𝜑)))
11 vex 2560 . . . . . 6 𝑦 ∈ V
1211alexeq 2670 . . . . 5 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝑦𝜑))
13 sp 1401 . . . . . 6 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
1413com12 27 . . . . 5 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
1512, 14syl5bir 142 . . . 4 (𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → 𝜑))
1610, 15impbid 120 . . 3 (𝑥 = 𝑦 → (𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑)))
178, 16vtoclg 2613 . 2 (𝐴 ∈ V → (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))))
183, 17mpcom 32 1 (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559
This theorem is referenced by:  ceqsexg  2672  sbc6g  2788
  Copyright terms: Public domain W3C validator