Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbveu GIF version

Theorem cbveu 1924
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cbveu.1 𝑦𝜑
cbveu.2 𝑥𝜓
cbveu.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbveu (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)

Proof of Theorem cbveu
StepHypRef Expression
1 cbveu.1 . . 3 𝑦𝜑
21sb8eu 1913 . 2 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
3 cbveu.2 . . . 4 𝑥𝜓
4 cbveu.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4sbie 1674 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
65eubii 1909 . 2 (∃!𝑦[𝑦 / 𝑥]𝜑 ↔ ∃!𝑦𝜓)
72, 6bitri 173 1 (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  Ⅎwnf 1349  [wsb 1645  ∃!weu 1900 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903 This theorem is referenced by:  cbvmo  1940  cbvreu  2531  cbvreucsf  2910  tz6.12f  5202  f1ompt  5320  climeu  9817
 Copyright terms: Public domain W3C validator