Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv GIF version

Theorem cbvalv 1794
 Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
cbvalv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvalv
StepHypRef Expression
1 ax-17 1419 . 2 (𝜑 → ∀𝑦𝜑)
2 ax-17 1419 . 2 (𝜓 → ∀𝑥𝜓)
3 cbvalv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvalh 1636 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  ∀wal 1241 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-nf 1350 This theorem is referenced by:  nfcjust  2166  cdeqal1  2755  zfpow  3928  tfisi  4310  acexmid  5511  tfrlem3-2d  5928  tfrlemi1  5946  tfrexlem  5948  findcard  6345  genprndl  6619  genprndu  6620
 Copyright terms: Public domain W3C validator