Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkj GIF version

Theorem caucvgprprlemnkj 6790
 Description: Lemma for caucvgprpr 6810. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprprlemnkj.k (𝜑𝐾N)
caucvgprprlemnkj.j (𝜑𝐽N)
caucvgprprlemnkj.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprprlemnkj (𝜑 → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
Distinct variable groups:   𝑘,𝐹,𝑛   𝐽,𝑝,𝑞   𝑢,𝐽   𝐽,𝑙   𝐾,𝑝,𝑞   𝐾,𝑙   𝑢,𝐾   𝑆,𝑝,𝑞   𝑢,𝑛   𝑛,𝑙,𝑘   𝑢,𝑘   𝑢,𝑞   𝑝,𝑙
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑆(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑞,𝑝,𝑙)   𝐽(𝑘,𝑛)   𝐾(𝑘,𝑛)

Proof of Theorem caucvgprprlemnkj
StepHypRef Expression
1 caucvgprpr.f . . 3 (𝜑𝐹:NP)
2 caucvgprpr.cau . . 3 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
3 caucvgprprlemnkj.k . . 3 (𝜑𝐾N)
4 caucvgprprlemnkj.j . . 3 (𝜑𝐽N)
5 caucvgprprlemnkj.s . . 3 (𝜑𝑆Q)
61, 2, 3, 4, 5caucvgprprlemnkltj 6787 . 2 ((𝜑𝐾 <N 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
71, 2, 3, 4, 5caucvgprprlemnkeqj 6788 . 2 ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
81, 2, 3, 4, 5caucvgprprlemnjltk 6789 . 2 ((𝜑𝐽 <N 𝐾) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
9 pitri3or 6420 . . 3 ((𝐾N𝐽N) → (𝐾 <N 𝐽𝐾 = 𝐽𝐽 <N 𝐾))
103, 4, 9syl2anc 391 . 2 (𝜑 → (𝐾 <N 𝐽𝐾 = 𝐽𝐽 <N 𝐾))
116, 7, 8, 10mpjao3dan 1202 1 (𝜑 → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ∨ w3o 884   = wceq 1243   ∈ wcel 1393  {cab 2026  ∀wral 2306  ⟨cop 3378   class class class wbr 3764  ⟶wf 4898  ‘cfv 4902  (class class class)co 5512  1𝑜c1o 5994  [cec 6104  Ncnpi 6370
 Copyright terms: Public domain W3C validator