Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdirg GIF version

Theorem caovdirg 5678
 Description: Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014.)
Hypothesis
Ref Expression
caovdirg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
Assertion
Ref Expression
caovdirg ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdirg
StepHypRef Expression
1 caovdirg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
21ralrimivvva 2402 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝐾 ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)))
3 oveq1 5519 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43oveq1d 5527 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝐴𝐹𝑦)𝐺𝑧))
5 oveq1 5519 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑧) = (𝐴𝐺𝑧))
65oveq1d 5527 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)))
74, 6eqeq12d 2054 . . 3 (𝑥 = 𝐴 → (((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) ↔ ((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧))))
8 oveq2 5520 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
98oveq1d 5527 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐹𝐵)𝐺𝑧))
10 oveq1 5519 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐺𝑧) = (𝐵𝐺𝑧))
1110oveq2d 5528 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)))
129, 11eqeq12d 2054 . . 3 (𝑦 = 𝐵 → (((𝐴𝐹𝑦)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝑦𝐺𝑧)) ↔ ((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧))))
13 oveq2 5520 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐹𝐵)𝐺𝐶))
14 oveq2 5520 . . . . 5 (𝑧 = 𝐶 → (𝐴𝐺𝑧) = (𝐴𝐺𝐶))
15 oveq2 5520 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐺𝑧) = (𝐵𝐺𝐶))
1614, 15oveq12d 5530 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
1713, 16eqeq12d 2054 . . 3 (𝑧 = 𝐶 → (((𝐴𝐹𝐵)𝐺𝑧) = ((𝐴𝐺𝑧)𝐻(𝐵𝐺𝑧)) ↔ ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))))
187, 12, 17rspc3v 2665 . 2 ((𝐴𝑆𝐵𝑆𝐶𝐾) → (∀𝑥𝑆𝑦𝑆𝑧𝐾 ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))))
192, 18mpan9 265 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885   = wceq 1243   ∈ wcel 1393  ∀wral 2306  (class class class)co 5512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515 This theorem is referenced by:  caovdird  5679  caovlem2d  5693
 Copyright terms: Public domain W3C validator