Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdig Structured version   GIF version

Theorem caovdig 5617
 Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
caovdig.1 ((φ (x 𝐾 y 𝑆 z 𝑆)) → (x𝐺(y𝐹z)) = ((x𝐺y)𝐻(x𝐺z)))
Assertion
Ref Expression
caovdig ((φ (A 𝐾 B 𝑆 𝐶 𝑆)) → (A𝐺(B𝐹𝐶)) = ((A𝐺B)𝐻(A𝐺𝐶)))
Distinct variable groups:   x,y,z,A   x,B,y,z   x,𝐶,y,z   φ,x,y,z   x,𝐹,y,z   x,𝐺,y,z   x,𝐻,y,z   x,𝐾,y,z   x,𝑆,y,z

Proof of Theorem caovdig
StepHypRef Expression
1 caovdig.1 . . 3 ((φ (x 𝐾 y 𝑆 z 𝑆)) → (x𝐺(y𝐹z)) = ((x𝐺y)𝐻(x𝐺z)))
21ralrimivvva 2396 . 2 (φx 𝐾 y 𝑆 z 𝑆 (x𝐺(y𝐹z)) = ((x𝐺y)𝐻(x𝐺z)))
3 oveq1 5462 . . . 4 (x = A → (x𝐺(y𝐹z)) = (A𝐺(y𝐹z)))
4 oveq1 5462 . . . . 5 (x = A → (x𝐺y) = (A𝐺y))
5 oveq1 5462 . . . . 5 (x = A → (x𝐺z) = (A𝐺z))
64, 5oveq12d 5473 . . . 4 (x = A → ((x𝐺y)𝐻(x𝐺z)) = ((A𝐺y)𝐻(A𝐺z)))
73, 6eqeq12d 2051 . . 3 (x = A → ((x𝐺(y𝐹z)) = ((x𝐺y)𝐻(x𝐺z)) ↔ (A𝐺(y𝐹z)) = ((A𝐺y)𝐻(A𝐺z))))
8 oveq1 5462 . . . . 5 (y = B → (y𝐹z) = (B𝐹z))
98oveq2d 5471 . . . 4 (y = B → (A𝐺(y𝐹z)) = (A𝐺(B𝐹z)))
10 oveq2 5463 . . . . 5 (y = B → (A𝐺y) = (A𝐺B))
1110oveq1d 5470 . . . 4 (y = B → ((A𝐺y)𝐻(A𝐺z)) = ((A𝐺B)𝐻(A𝐺z)))
129, 11eqeq12d 2051 . . 3 (y = B → ((A𝐺(y𝐹z)) = ((A𝐺y)𝐻(A𝐺z)) ↔ (A𝐺(B𝐹z)) = ((A𝐺B)𝐻(A𝐺z))))
13 oveq2 5463 . . . . 5 (z = 𝐶 → (B𝐹z) = (B𝐹𝐶))
1413oveq2d 5471 . . . 4 (z = 𝐶 → (A𝐺(B𝐹z)) = (A𝐺(B𝐹𝐶)))
15 oveq2 5463 . . . . 5 (z = 𝐶 → (A𝐺z) = (A𝐺𝐶))
1615oveq2d 5471 . . . 4 (z = 𝐶 → ((A𝐺B)𝐻(A𝐺z)) = ((A𝐺B)𝐻(A𝐺𝐶)))
1714, 16eqeq12d 2051 . . 3 (z = 𝐶 → ((A𝐺(B𝐹z)) = ((A𝐺B)𝐻(A𝐺z)) ↔ (A𝐺(B𝐹𝐶)) = ((A𝐺B)𝐻(A𝐺𝐶))))
187, 12, 17rspc3v 2659 . 2 ((A 𝐾 B 𝑆 𝐶 𝑆) → (x 𝐾 y 𝑆 z 𝑆 (x𝐺(y𝐹z)) = ((x𝐺y)𝐻(x𝐺z)) → (A𝐺(B𝐹𝐶)) = ((A𝐺B)𝐻(A𝐺𝐶))))
192, 18mpan9 265 1 ((φ (A 𝐾 B 𝑆 𝐶 𝑆)) → (A𝐺(B𝐹𝐶)) = ((A𝐺B)𝐻(A𝐺𝐶)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 884   = wceq 1242   ∈ wcel 1390  ∀wral 2300  (class class class)co 5455 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-iota 4810  df-fv 4853  df-ov 5458 This theorem is referenced by:  caovdid  5618  caovdi  5622
 Copyright terms: Public domain W3C validator