Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcanrd GIF version

Theorem caovcanrd 5664
 Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovcang.1 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
caovcand.2 (𝜑𝐴𝑇)
caovcand.3 (𝜑𝐵𝑆)
caovcand.4 (𝜑𝐶𝑆)
caovcanrd.5 (𝜑𝐴𝑆)
caovcanrd.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
Assertion
Ref Expression
caovcanrd (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧

Proof of Theorem caovcanrd
StepHypRef Expression
1 caovcanrd.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
2 caovcanrd.5 . . . 4 (𝜑𝐴𝑆)
3 caovcand.3 . . . 4 (𝜑𝐵𝑆)
41, 2, 3caovcomd 5657 . . 3 (𝜑 → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
5 caovcand.4 . . . 4 (𝜑𝐶𝑆)
61, 2, 5caovcomd 5657 . . 3 (𝜑 → (𝐴𝐹𝐶) = (𝐶𝐹𝐴))
74, 6eqeq12d 2054 . 2 (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ (𝐵𝐹𝐴) = (𝐶𝐹𝐴)))
8 caovcang.1 . . 3 ((𝜑 ∧ (𝑥𝑇𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦) = (𝑥𝐹𝑧) ↔ 𝑦 = 𝑧))
9 caovcand.2 . . 3 (𝜑𝐴𝑇)
108, 9, 3, 5caovcand 5663 . 2 (𝜑 → ((𝐴𝐹𝐵) = (𝐴𝐹𝐶) ↔ 𝐵 = 𝐶))
117, 10bitr3d 179 1 (𝜑 → ((𝐵𝐹𝐴) = (𝐶𝐹𝐴) ↔ 𝐵 = 𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   ∧ w3a 885   = wceq 1243   ∈ wcel 1393  (class class class)co 5512 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator