Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqi GIF version

Theorem breqi 3770
 Description: Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.)
Hypothesis
Ref Expression
breqi.1 𝑅 = 𝑆
Assertion
Ref Expression
breqi (𝐴𝑅𝐵𝐴𝑆𝐵)

Proof of Theorem breqi
StepHypRef Expression
1 breqi.1 . 2 𝑅 = 𝑆
2 breq 3766 . 2 (𝑅 = 𝑆 → (𝐴𝑅𝐵𝐴𝑆𝐵))
31, 2ax-mp 7 1 (𝐴𝑅𝐵𝐴𝑆𝐵)
 Colors of variables: wff set class Syntax hints:   ↔ wb 98   = wceq 1243   class class class wbr 3764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036  df-br 3765 This theorem is referenced by:  f1ompt  5320  brtpos2  5866  tfrexlem  5948  brdifun  6133  ltpiord  6417  ltxrlt  7085  ltxr  8695
 Copyright terms: Public domain W3C validator