Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqd | GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
breqd | ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breq 3766 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 ↔ 𝐶𝐵𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1243 class class class wbr 3764 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 df-br 3765 |
This theorem is referenced by: breq123d 3778 sbcbr12g 3814 sprmpt2 5857 shftfibg 9421 shftfib 9424 2shfti 9432 |
Copyright terms: Public domain | W3C validator |