![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-uniexg | GIF version |
Description: uniexg 4141 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-uniexg | ⊢ (A ∈ 𝑉 → ∪ A ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3580 | . . 3 ⊢ (x = A → ∪ x = ∪ A) | |
2 | 1 | eleq1d 2103 | . 2 ⊢ (x = A → (∪ x ∈ V ↔ ∪ A ∈ V)) |
3 | vex 2554 | . . 3 ⊢ x ∈ V | |
4 | 3 | bj-uniex 9372 | . 2 ⊢ ∪ x ∈ V |
5 | 2, 4 | vtoclg 2607 | 1 ⊢ (A ∈ 𝑉 → ∪ A ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1242 ∈ wcel 1390 Vcvv 2551 ∪ cuni 3571 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-un 4136 ax-bd0 9268 ax-bdex 9274 ax-bdel 9276 ax-bdsb 9277 ax-bdsep 9339 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-rex 2306 df-v 2553 df-uni 3572 df-bdc 9296 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |