Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ssom GIF version

Theorem bj-ssom 10060
 Description: A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ssom (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-ssom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 3631 . . 3 (𝐴 {𝑦 ∣ Ind 𝑦} ↔ ∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴𝑥)
2 df-ral 2311 . . 3 (∀𝑥 ∈ {𝑦 ∣ Ind 𝑦}𝐴𝑥 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴𝑥))
3 vex 2560 . . . . . 6 𝑥 ∈ V
4 bj-indeq 10053 . . . . . 6 (𝑦 = 𝑥 → (Ind 𝑦 ↔ Ind 𝑥))
53, 4elab 2687 . . . . 5 (𝑥 ∈ {𝑦 ∣ Ind 𝑦} ↔ Ind 𝑥)
65imbi1i 227 . . . 4 ((𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴𝑥) ↔ (Ind 𝑥𝐴𝑥))
76albii 1359 . . 3 (∀𝑥(𝑥 ∈ {𝑦 ∣ Ind 𝑦} → 𝐴𝑥) ↔ ∀𝑥(Ind 𝑥𝐴𝑥))
81, 2, 73bitrri 196 . 2 (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 {𝑦 ∣ Ind 𝑦})
9 bj-dfom 10057 . . . 4 ω = {𝑦 ∣ Ind 𝑦}
109eqcomi 2044 . . 3 {𝑦 ∣ Ind 𝑦} = ω
1110sseq2i 2970 . 2 (𝐴 {𝑦 ∣ Ind 𝑦} ↔ 𝐴 ⊆ ω)
128, 11bitri 173 1 (∀𝑥(Ind 𝑥𝐴𝑥) ↔ 𝐴 ⊆ ω)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  ∀wal 1241   ∈ wcel 1393  {cab 2026  ∀wral 2306   ⊆ wss 2917  ∩ cint 3615  ωcom 4313  Ind wind 10050 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-int 3616  df-iom 4314  df-bj-ind 10051 This theorem is referenced by:  bj-om  10061
 Copyright terms: Public domain W3C validator