Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnord GIF version

Theorem bj-nnord 10083
Description: A natural number is an ordinal. Constructive proof of nnord 4334. Can also be proved from bj-nnelon 10084 if the latter is proved from bj-omssonALT 10088. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnord (𝐴 ∈ ω → Ord 𝐴)

Proof of Theorem bj-nnord
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bj-nntrans2 10077 . 2 (𝐴 ∈ ω → Tr 𝐴)
2 bj-omtrans 10081 . . . . . 6 (𝐴 ∈ ω → 𝐴 ⊆ ω)
32sseld 2944 . . . . 5 (𝐴 ∈ ω → (𝑥𝐴𝑥 ∈ ω))
4 bj-nntrans2 10077 . . . . 5 (𝑥 ∈ ω → Tr 𝑥)
53, 4syl6 29 . . . 4 (𝐴 ∈ ω → (𝑥𝐴 → Tr 𝑥))
65alrimiv 1754 . . 3 (𝐴 ∈ ω → ∀𝑥(𝑥𝐴 → Tr 𝑥))
7 df-ral 2311 . . 3 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥(𝑥𝐴 → Tr 𝑥))
86, 7sylibr 137 . 2 (𝐴 ∈ ω → ∀𝑥𝐴 Tr 𝑥)
9 dford3 4104 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 Tr 𝑥))
101, 8, 9sylanbrc 394 1 (𝐴 ∈ ω → Ord 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241  wcel 1393  wral 2306  Tr wtr 3854  Ord word 4099  ωcom 4313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-nul 3883  ax-pr 3944  ax-un 4170  ax-bd0 9933  ax-bdor 9936  ax-bdal 9938  ax-bdex 9939  ax-bdeq 9940  ax-bdel 9941  ax-bdsb 9942  ax-bdsep 10004  ax-infvn 10066
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-sn 3381  df-pr 3382  df-uni 3581  df-int 3616  df-tr 3855  df-iord 4103  df-suc 4108  df-iom 4314  df-bdc 9961  df-bj-ind 10051
This theorem is referenced by:  bj-nnelon  10084
  Copyright terms: Public domain W3C validator