Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intnexr Structured version   GIF version

Theorem bj-intnexr 9364
Description: intnexr 3896 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-intnexr ( A = V → ¬ A V)

Proof of Theorem bj-intnexr
StepHypRef Expression
1 bj-vprc 9351 . 2 ¬ V V
2 eleq1 2097 . 2 ( A = V → ( A V ↔ V V))
31, 2mtbiri 599 1 ( A = V → ¬ A V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1242   wcel 1390  Vcvv 2551   cint 3606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019  ax-bdn 9272  ax-bdel 9276  ax-bdsep 9339
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator