Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-exlimmpi Structured version   GIF version

Theorem bj-exlimmpi 9179
Description: Lemma for bj-vtoclgf 9184. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-exlimmp.nf xψ
bj-exlimmp.min (χφ)
bj-exlimmpi.maj (χ → (φψ))
Assertion
Ref Expression
bj-exlimmpi (xχψ)

Proof of Theorem bj-exlimmpi
StepHypRef Expression
1 bj-exlimmp.nf . 2 xψ
2 bj-exlimmp.min . . 3 (χφ)
3 bj-exlimmpi.maj . . 3 (χ → (φψ))
42, 3mpd 13 . 2 (χψ)
51, 4exlimi 1482 1 (xχψ)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1346  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-gen 1335  ax-ie2 1380  ax-4 1397
This theorem depends on definitions:  df-bi 110  df-nf 1347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator