Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-exlimmp GIF version

Theorem bj-exlimmp 9909
 Description: Lemma for bj-vtoclgf 9915. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-exlimmp.nf 𝑥𝜓
bj-exlimmp.min (𝜒𝜑)
Assertion
Ref Expression
bj-exlimmp (∀𝑥(𝜒 → (𝜑𝜓)) → (∃𝑥𝜒𝜓))

Proof of Theorem bj-exlimmp
StepHypRef Expression
1 nfa1 1434 . 2 𝑥𝑥(𝜒 → (𝜑𝜓))
2 bj-exlimmp.nf . 2 𝑥𝜓
3 bj-exlimmp.min . . . . 5 (𝜒𝜑)
4 idd 21 . . . . 5 (𝜒 → (𝜓𝜓))
53, 4embantd 50 . . . 4 (𝜒 → ((𝜑𝜓) → 𝜓))
65a2i 11 . . 3 ((𝜒 → (𝜑𝜓)) → (𝜒𝜓))
76sps 1430 . 2 (∀𝑥(𝜒 → (𝜑𝜓)) → (𝜒𝜓))
81, 2, 7exlimd 1488 1 (∀𝑥(𝜒 → (𝜑𝜓)) → (∃𝑥𝜒𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1241  Ⅎwnf 1349  ∃wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie2 1383  ax-4 1400  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-nf 1350 This theorem is referenced by:  bj-vtoclgft  9914
 Copyright terms: Public domain W3C validator