ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitr Structured version   GIF version

Theorem bitr 441
Description: Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bitr (((φψ) (ψχ)) → (φχ))

Proof of Theorem bitr
StepHypRef Expression
1 bibi1 229 . 2 ((φψ) → ((φχ) ↔ (ψχ)))
21biimpar 281 1 (((φψ) (ψχ)) → (φχ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  opelopabt  3990
  Copyright terms: Public domain W3C validator