![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicom1 | GIF version |
Description: Commutative law for equivalence. (Contributed by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
bicom1 | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2 121 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
2 | bi1 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
3 | 1, 2 | impbid 120 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: bicomi 123 bicom 128 pm5.21ndd 621 cbvexdh 1801 elabgf2 9919 |
Copyright terms: Public domain | W3C validator |