ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bicom1 Structured version   GIF version

Theorem bicom1 122
Description: Commutative law for equivalence. (Contributed by Wolf Lammen, 10-Nov-2012.)
Assertion
Ref Expression
bicom1 ((φψ) → (ψφ))

Proof of Theorem bicom1
StepHypRef Expression
1 bi2 121 . 2 ((φψ) → (ψφ))
2 bi1 111 . 2 ((φψ) → (φψ))
31, 2impbid 120 1 ((φψ) → (ψφ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  bicomi  123  bicom  128  pm5.21ndd  620  cbvexdh  1798  elabgf2  9234
  Copyright terms: Public domain W3C validator