ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1 Structured version   GIF version

Theorem bibi1 229
Description: Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bibi1 ((φψ) → ((φχ) ↔ (ψχ)))

Proof of Theorem bibi1
StepHypRef Expression
1 id 19 . 2 ((φψ) → (φψ))
21bibi1d 222 1 ((φψ) → ((φχ) ↔ (ψχ)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  bitr  441  pm5.18im  1273  sbeqalb  2809
  Copyright terms: Public domain W3C validator