Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdxor GIF version

Theorem bdxor 9956
 Description: The exclusive disjunction of two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdxor.1 BOUNDED 𝜑
bdxor.2 BOUNDED 𝜓
Assertion
Ref Expression
bdxor BOUNDED (𝜑𝜓)

Proof of Theorem bdxor
StepHypRef Expression
1 bdxor.1 . . . 4 BOUNDED 𝜑
2 bdxor.2 . . . 4 BOUNDED 𝜓
31, 2ax-bdor 9936 . . 3 BOUNDED (𝜑𝜓)
41, 2ax-bdan 9935 . . . 4 BOUNDED (𝜑𝜓)
54ax-bdn 9937 . . 3 BOUNDED ¬ (𝜑𝜓)
63, 5ax-bdan 9935 . 2 BOUNDED ((𝜑𝜓) ∧ ¬ (𝜑𝜓))
7 df-xor 1267 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
86, 7bd0r 9945 1 BOUNDED (𝜑𝜓)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 97   ∨ wo 629   ⊻ wxo 1266  BOUNDED wbd 9932 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-bd0 9933  ax-bdan 9935  ax-bdor 9936  ax-bdn 9937 This theorem depends on definitions:  df-bi 110  df-xor 1267 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator