![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsepnf | GIF version |
Description: Version of ax-bdsep 10004 with one DV condition removed, the other DV condition replaced by a non-freeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 10009. Use bdsep1 10005 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
bdsepnf.nf | ⊢ Ⅎ𝑏𝜑 |
bdsepnf.1 | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
bdsepnf | ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdsepnf.1 | . . 3 ⊢ BOUNDED 𝜑 | |
2 | 1 | bdsepnft 10007 | . 2 ⊢ (∀𝑥Ⅎ𝑏𝜑 → ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) |
3 | bdsepnf.nf | . 2 ⊢ Ⅎ𝑏𝜑 | |
4 | 2, 3 | mpg 1340 | 1 ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 ∀wal 1241 Ⅎwnf 1349 ∃wex 1381 BOUNDED wbd 9932 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-bdsep 10004 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |