Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdreu GIF version

Theorem bdreu 9975
Description: Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula 𝑥𝐴𝜑 need not be bounded even if 𝐴 and 𝜑 are. Indeed, V is bounded by bdcvv 9977, and (∀𝑥 ∈ V𝜑 ↔ ∀𝑥𝜑) (in minimal propositional calculus), so by bd0 9944, if 𝑥 ∈ V𝜑 were bounded when 𝜑 is bounded, then 𝑥𝜑 would be bounded as well when 𝜑 is bounded, which is not the case. The same remark holds with ∃, ∃!, ∃*. (Contributed by BJ, 16-Oct-2019.)

Hypothesis
Ref Expression
bdreu.1 BOUNDED 𝜑
Assertion
Ref Expression
bdreu BOUNDED ∃!𝑥𝑦 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bdreu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bdreu.1 . . . 4 BOUNDED 𝜑
21ax-bdex 9939 . . 3 BOUNDED𝑥𝑦 𝜑
3 ax-bdeq 9940 . . . . . 6 BOUNDED 𝑥 = 𝑧
41, 3ax-bdim 9934 . . . . 5 BOUNDED (𝜑𝑥 = 𝑧)
54ax-bdal 9938 . . . 4 BOUNDED𝑥𝑦 (𝜑𝑥 = 𝑧)
65ax-bdex 9939 . . 3 BOUNDED𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)
72, 6ax-bdan 9935 . 2 BOUNDED (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧))
8 reu3 2731 . 2 (∃!𝑥𝑦 𝜑 ↔ (∃𝑥𝑦 𝜑 ∧ ∃𝑧𝑦𝑥𝑦 (𝜑𝑥 = 𝑧)))
97, 8bd0r 9945 1 BOUNDED ∃!𝑥𝑦 𝜑
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wral 2306  wrex 2307  ∃!wreu 2308  BOUNDED wbd 9932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-bd0 9933  ax-bdim 9934  ax-bdan 9935  ax-bdal 9938  ax-bdex 9939  ax-bdeq 9940
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-cleq 2033  df-clel 2036  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314
This theorem is referenced by:  bdrmo  9976
  Copyright terms: Public domain W3C validator