Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex2 Structured version   GIF version

Theorem bdinex2 7270
Description: Bounded version of inex2 3866. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex2.bd BOUNDED B
bdinex2.1 A V
Assertion
Ref Expression
bdinex2 (BA) V

Proof of Theorem bdinex2
StepHypRef Expression
1 incom 3106 . 2 (BA) = (AB)
2 bdinex2.bd . . 3 BOUNDED B
3 bdinex2.1 . . 3 A V
42, 3bdinex1 7269 . 2 (AB) V
51, 4eqeltri 2092 1 (BA) V
Colors of variables: wff set class
Syntax hints:   wcel 1374  Vcvv 2535  cin 2893  BOUNDED wbdc 7214
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-bdsep 7258
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537  df-in 2901  df-bdc 7215
This theorem is referenced by:  bdssex  7272
  Copyright terms: Public domain W3C validator