Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex2 Structured version   GIF version

Theorem bdinex2 9331
 Description: Bounded version of inex2 3883. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex2.bd BOUNDED B
bdinex2.1 A V
Assertion
Ref Expression
bdinex2 (BA) V

Proof of Theorem bdinex2
StepHypRef Expression
1 incom 3123 . 2 (BA) = (AB)
2 bdinex2.bd . . 3 BOUNDED B
3 bdinex2.1 . . 3 A V
42, 3bdinex1 9330 . 2 (AB) V
51, 4eqeltri 2107 1 (BA) V
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1390  Vcvv 2551   ∩ cin 2910  BOUNDED wbdc 9275 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-bdsep 9319 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918  df-bdc 9276 This theorem is referenced by:  bdssex  9333
 Copyright terms: Public domain W3C validator