Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdfind | GIF version |
Description: Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4322 for a nonconstructive proof of the general case. See findset 10070 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bdfind.bd | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdfind | ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdfind.bd | . . . 4 ⊢ BOUNDED 𝐴 | |
2 | bj-omex 10067 | . . . 4 ⊢ ω ∈ V | |
3 | 1, 2 | bdssex 10022 | . . 3 ⊢ (𝐴 ⊆ ω → 𝐴 ∈ V) |
4 | 3 | 3ad2ant1 925 | . 2 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 ∈ V) |
5 | findset 10070 | . 2 ⊢ (𝐴 ∈ V → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω)) | |
6 | 4, 5 | mpcom 32 | 1 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 885 = wceq 1243 ∈ wcel 1393 ∀wral 2306 Vcvv 2557 ⊆ wss 2917 ∅c0 3224 suc csuc 4102 ωcom 4313 BOUNDED wbdc 9960 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-nul 3883 ax-pr 3944 ax-un 4170 ax-bd0 9933 ax-bdan 9935 ax-bdor 9936 ax-bdex 9939 ax-bdeq 9940 ax-bdel 9941 ax-bdsb 9942 ax-bdsep 10004 ax-infvn 10066 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-sn 3381 df-pr 3382 df-uni 3581 df-int 3616 df-suc 4108 df-iom 4314 df-bdc 9961 df-bj-ind 10051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |