Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdfind Structured version   GIF version

Theorem bdfind 9334
Description: Bounded induction (principle of induction when A is assumed to be bounded), proved from basic constructive axioms. See find 4265 for a nonconstructive proof of the general case. See findset 9333 for a proof when A is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bdfind.bd BOUNDED A
Assertion
Ref Expression
bdfind ((A ⊆ 𝜔 A x A suc x A) → A = 𝜔)
Distinct variable group:   x,A

Proof of Theorem bdfind
StepHypRef Expression
1 bdfind.bd . . . 4 BOUNDED A
2 bj-omex 9330 . . . 4 𝜔 V
31, 2bdssex 9287 . . 3 (A ⊆ 𝜔 → A V)
433ad2ant1 924 . 2 ((A ⊆ 𝜔 A x A suc x A) → A V)
5 findset 9333 . 2 (A V → ((A ⊆ 𝜔 A x A suc x A) → A = 𝜔))
64, 5mpcom 32 1 ((A ⊆ 𝜔 A x A suc x A) → A = 𝜔)
Colors of variables: wff set class
Syntax hints:  wi 4   w3a 884   = wceq 1242   wcel 1390  wral 2300  Vcvv 2551  wss 2911  c0 3218  suc csuc 4068  𝜔com 4256  BOUNDED wbdc 9229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-nul 3874  ax-pr 3935  ax-un 4136  ax-bd0 9202  ax-bdan 9204  ax-bdor 9205  ax-bdex 9208  ax-bdeq 9209  ax-bdel 9210  ax-bdsb 9211  ax-bdsep 9273  ax-infvn 9329
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-sn 3373  df-pr 3374  df-uni 3572  df-int 3607  df-suc 4074  df-iom 4257  df-bdc 9230  df-bj-ind 9316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator