Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcvv Structured version   GIF version

Theorem bdcvv 9292
Description: The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcvv BOUNDED V

Proof of Theorem bdcvv
StepHypRef Expression
1 vex 2554 . . 3 x V
21bdth 9266 . 2 BOUNDED x V
32bdelir 9282 1 BOUNDED V
Colors of variables: wff set class
Syntax hints:   wcel 1390  Vcvv 2551  BOUNDED wbdc 9275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019  ax-bd0 9248  ax-bdim 9249  ax-bdeq 9255
This theorem depends on definitions:  df-bi 110  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553  df-bdc 9276
This theorem is referenced by:  bdcnulALT  9301
  Copyright terms: Public domain W3C validator