Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnul Structured version   GIF version

Theorem bdcnul 9320
 Description: The empty class is bounded. See also bdcnulALT 9321. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcnul BOUNDED

Proof of Theorem bdcnul
StepHypRef Expression
1 noel 3222 . . 3 ¬ x
21bdnth 9289 . 2 BOUNDED x
32bdelir 9302 1 BOUNDED
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1390  ∅c0 3218  BOUNDED wbdc 9295 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-bd0 9268  ax-bdim 9269  ax-bdn 9272  ax-bdeq 9275 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-dif 2914  df-nul 3219  df-bdc 9296 This theorem is referenced by:  bdeq0  9322
 Copyright terms: Public domain W3C validator